Managing intracellular transport.

2013/01/01

Chua JJ, Jahn R, Klopfenstein DR

Worm. 2013 Jan 1;2(1):e21564. doi: 10.4161/worm.21564.OpenAccess Publication


Formation and normal function of neuronal synapses are intimately dependent on the delivery to and removal of biological materials from synapses by the intracellular transport machinery. Indeed, defects in intracellular transport contribute to the development and aggravation of neurodegenerative disorders. Despite its importance, regulatory mechanisms underlying this machinery remain poorly defined. We recently uncovered a phosphorylation-regulated mechanism that controls FEZ1-mediated Kinesin-1-based delivery of Stx1 into neuronal axons. Using C. elegans as a model organism to investigate transport defects, we show that FEZ1 mutations resulted in abnormal Stx1 aggregation in neuronal cell bodies and axons. This phenomenon closely resembles transport defects observed in neurodegenerative disorders. Importantly, diminished transport due to mutations of FEZ1 and Kinesin-1 were concomitant with increased accumulation of autophagosomes. Here, we discuss the significance of our findings in a broader context in relation to regulation of Kinesin-mediated transport and neurodegenerative disorders.

tl_files/eurospin/images/200px-Open_Access_PLoS.svg.png


PubMed-Abstract site

Go back